|                                    | 1              | Exploring Aeroi             | nautics                                                                         |
|------------------------------------|----------------|-----------------------------|---------------------------------------------------------------------------------|
|                                    |                | 2006 Mathem                 |                                                                                 |
|                                    |                | Grade Level Expe            | ectations                                                                       |
| <b>Delaware Mathematic</b>         | s              |                             |                                                                                 |
| Grade 5                            |                |                             |                                                                                 |
| Activity/Lesson                    | State          | Standards                   |                                                                                 |
| Airplane Control(209-              |                |                             | Use measuring tools to find the size of turn                                    |
| 256)                               | DE             | MA.5. 3.3.3                 | angles in degrees                                                               |
| Airplane Control(209-              |                |                             | Draw benchmark turn angles (30, 45, 60, 90,                                     |
| 256)                               | DE             | MA.5. 3.3.4                 | 180 degrees)                                                                    |
|                                    |                |                             | Model problem situations with objects and use                                   |
| Onlare of Filely                   | DE             | NAA 5 0 0 4                 | representations such as graphs, tables or                                       |
| Science of Flight                  | DE             | MA.5. 2.2.1                 | equations to draw conclusion                                                    |
|                                    |                |                             | Pose questions that can be answered with data;                                  |
| Coionno of Flight                  | DE             | MA.5. 4.1.1                 | systematically collect and organize categorical and numerical/ measurement data |
| Science of Flight Integrating with | DE             | IVIA.5. 4.1.1               | Develop the meaning of percent as a ratio of a                                  |
| Aeronautics                        | DE             | MA.5. 1.1.9                 | number out of 100                                                               |
| Integrating with                   | DL             | IVIA.3. 1.1.9               | Develop and use strategies to estimate the                                      |
| Aeronautics                        | DE             | MA.5. 1.2.6                 | results of operations on whole numbers                                          |
| 7101011441100                      |                | 1017 (.0. 1.2.0             | Select and use appropriate methods and tools                                    |
|                                    |                |                             | for computing (e.g., mental computation,                                        |
|                                    |                |                             | estimation, calculators, paper and pencil)                                      |
| Integrating with                   |                |                             | depending on the context and nature of the                                      |
| Aeronautics                        | DE             | MA.5. 1.2.14                | computation                                                                     |
|                                    |                |                             | Model problem situations with objects and use                                   |
| Integrating with                   |                |                             | representations such as graphs, tables or                                       |
| Aeronautics                        | DE             | MA.5. 2.2.1                 | equations to draw conclusion                                                    |
| Integrating with                   |                |                             | Use equations to express mathematical                                           |
| Aeronautics                        | DE             | MA.5. 2.3.1                 | relationships                                                                   |
|                                    |                |                             | Model problem situations with objects and use                                   |
| Scientific Method(124-             |                |                             | representations such as graphs, tables or                                       |
| 144)                               | DE             | MA.5. 2.2.1                 | equations to draw conclusion                                                    |
|                                    |                |                             | Pose questions that can be answered with data;                                  |
| Scientific Method(124-             |                |                             | systematically collect and organize categorical                                 |
| 144)                               | DE             | MA.5. 4.1.1                 | and numerical/ measurement data                                                 |
|                                    |                |                             | Find and use measures of center (mean,                                          |
| Scientific Method(124-             |                |                             | median, mode) and spread (range) to                                             |
| 144)                               | DE             | MA.5. 4.3.2                 | summarize and interpret data                                                    |
|                                    |                | F1                          |                                                                                 |
|                                    |                | Exploring Aeror 2006 Mathem |                                                                                 |
|                                    |                | Grade Level Expe            |                                                                                 |
| Delaware Mathematic                | ·e             | Graue Level EXPE            | cuations                                                                        |
| Grade 6                            | .5             |                             |                                                                                 |
| Activity/Lesson                    | State          | Standards                   |                                                                                 |
|                                    | 3.4.5          | Juliaulus                   | Demonstrate an understanding that the                                           |
|                                    |                |                             | perimeters of rectangles with a fixed area can                                  |
| Wings(177-208)                     | DE             | MA.6. 3.3.2                 | vary                                                                            |
|                                    | _ <del>_</del> |                             | Demonstrate an understanding that the areas of                                  |
| Wings(177-208)                     | DE             | MA.6. 3.3.3                 | rectangles with a fixed perimeter can vary                                      |

| 144)                                           | DE       | MA.6. 4.1.1                | or decimal) data in order to answer a question  Construct displays of data (e.g., circle graphs,                                                                |
|------------------------------------------------|----------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scientific Method(124-144)                     | DE       | MA.6. 4.2.1                | scatter plots, frequency counts) for a single data set                                                                                                          |
| 144)                                           | DE       | MA.6. 4.2.1                | Defend conclusions drawn from the                                                                                                                               |
| Scientific Method(124-144)                     | DE       | MA.6. 4.3.1                | interpretation of data by comparing one data set to another                                                                                                     |
| Scientific Method(124-                         |          |                            |                                                                                                                                                                 |
|                                                |          | MA.6. 4.2.1                | set                                                                                                                                                             |
| Scientific Method(124-                         |          |                            | Construct displays of data (e.g., circle graphs, scatter plots, frequency counts) for a single data                                                             |
| Scientific Method(124-144)                     | DE       | MA.6. 4.1.1                | Collect and organize numerical (whole number or decimal) data in order to answer a question  Construct displays of data (e.g., circle graphs                    |
| Aeronautics                                    | DE       | MA.6. 2.2.1                | represented by a table, graph or equation                                                                                                                       |
| Aeronautics Integrating with                   | DE       | MA.6. 2.1.1                | of change in numeric and geometric patterns  Demonstrate that a given situation may be                                                                          |
| Aeronautics Integrating with                   | DE       | MA.6. 1.2.10               | Use an expression or rule to describe patterns                                                                                                                  |
| Integrating with                               | DE       | MA 6 1 2 10                | for computing (e.g., mental computation, estimation, calculators, paper, and pencil) depending on the context and nature of the                                 |
| Integrating with<br>Aeronautics                | DE       | MA.6. 1.2.9                | Describe in which situations an estimate is preferable and in which situations the exact answer is required  Select and use appropriate methods and tools       |
| Science of Flight Integrating with Aeronautics | DE<br>DE | MA.6. 4.3.1<br>MA.6. 1.2.2 | interpretation of data by comparing one data set to another  Multiply fractions by other fractions using physical models, ratio/rate tables, and arrays         |
| The Resource Center Science of Flight          | DE<br>DE | MA.6. 1.1.1<br>MA.6. 4.1.1 | include numbers in the millions  Collect and organize numerical (whole number or decimal) data in order to answer a question  Defend conclusions drawn from the |
| Airplane Control(209-<br>256)                  | DE       | MA.6. 3.2.1                | transformations such as reflections (flips), translations (slides), and rotations (turns) maintain congruence Expand understanding of the number system to      |

| Integrating with       |        |                                | Number sense. Compare integers on the             |
|------------------------|--------|--------------------------------|---------------------------------------------------|
| Aeronautics            | DE     | MA.7.1.1.7                     | number line                                       |
| Integrating with       |        |                                | Use ratios, proportions and percents to solve     |
| Aeronautics            | DE     | MA.7.1.2.5                     | contextualized problems                           |
| Toronadioo             | D      | 100 0.7.11.2.0                 | Select and use appropriate methods and tools      |
|                        |        |                                | for computing (e.g., mental computation,          |
|                        |        |                                | estimation, calculators, paper and pencil)        |
| Integrating with       |        |                                | depending on the context and nature of the        |
| Aeronautics            | DE     | MA.7.1.2.9                     | computation                                       |
| Actoriautics           | DE     | IVIA.1.1.2.9                   | Connect different representations of the same     |
| Intograting with       |        |                                | situation to one another using tables, graphs,    |
| Integrating with       | DE     | MA 7 2 2 1                     | J , J ,                                           |
| Aeronautics            | DE     | MA.7.2.2.1                     | and rules                                         |
|                        |        |                                | Pose questions that can be answered by            |
| 0 : ((5 14 14 14404    |        |                                | collecting and organizing data from experiments,  |
| Scientific Method(124- |        |                                | surveys, and relevant print and electronic        |
| 144)                   | DE     | MA.7.4.1.1                     | resources                                         |
|                        |        |                                | Construct displays of data for single data sets   |
|                        |        |                                | (e.g., stem-and-leaf plots) or in order to study  |
| Scientific Method(124- |        |                                | the relationship between related data sets        |
| 144)                   | DE     | MA.7.4.2.1                     | (scatter plots)                                   |
|                        |        |                                | Defend or dispute conclusions drawn from the      |
| Scientific Method(124- |        |                                | interpretation of data by comparing one data set  |
| 144)                   | DE     | MA.7.4.3.1                     | to another                                        |
|                        |        |                                | Choose an appropriate measures of center          |
| Scientific Method(124- |        |                                | (mean, median, mode) and spread (range) to        |
| 144)                   | DE     | MA.7.4.3.2                     | interpret data set(s)                             |
|                        |        |                                |                                                   |
|                        |        | Exploring Aero                 |                                                   |
|                        |        | 2006 Mathen<br>Grade Level Exp |                                                   |
| Delaware Mathematic    | •      | Grade Level Lxp                | ectations                                         |
| Grade 8                | ,s<br> |                                |                                                   |
| Activity/Lesson        | State  | Standards                      |                                                   |
| Activity/Ecoson        | Otate  | Otandards                      | Compare and make predictions based on             |
|                        |        |                                | theoretical and experimental probabilities, using |
| Tools of               |        |                                | sample data generated through actual              |
|                        | DE     | MA.8. 4.4.1                    | experiments or computer simulations               |
| Aeronautics(257-326)   | DE     | IVIA.0. 4.4. I                 |                                                   |
|                        |        |                                | Pose questions that can be answered by            |
|                        |        |                                | collecting and organizing data from experiments,  |
| Colongo of Flight      | חב     | NAA O 4 4 4                    | surveys, and relevant print and electronic        |
| Science of Flight      | DE     | MA.8. 4.1.1                    | resources                                         |
|                        |        |                                | Compare and make predictions based on             |
|                        |        |                                | theoretical and experimental probabilities, using |
| 6                      |        |                                | sample data generated through actual              |
| Science of Flight      | DE     | MA.8. 4.4.1                    | experiments or computer simulations               |
|                        |        |                                | Investigate and describe the difference between   |
|                        |        |                                | the event experimental probability of a simulated |
|                        |        |                                | event (experiment) and the theoretical            |
| Science of Flight      | DE     | MA.8. 4.4.3                    | probability of the same event                     |
| Integrating with       |        |                                | Compare the rates of change in tables and         |
| Aeronautics            | DE     | MA.8. 2.1.3                    | graphs and classify them as linear or nonlinear   |

| Integrating with       |    |             | Use an algebraic expression to represent any       |
|------------------------|----|-------------|----------------------------------------------------|
| Aeronautics            | DE | MA.8. 2.1.5 | term in a numeric or geometric pattern             |
| Integrating with       |    |             | Write an equation given the tabular or graphic     |
| Aeronautics            | DE | MA.8. 2.2.1 | form of a linear problem                           |
| Integrating with       |    |             | Use tables, graphs and symbolic reasoning to       |
| Aeronautics            | DE | MA.8. 2.2.4 | identify functions as linear or nonlinear          |
| Integrating with       |    |             | Use the Pythagorean Theorem to find missing        |
| Aeronautics            | DE | MA.8. 3.2.3 | sides of right triangles                           |
| Scientific Method(124- |    |             | Use random sampling methods to collect the         |
| 144)                   | DE | MA.8. 4.1.2 | necessary information to answer questions          |
|                        |    |             | Construct displays of data to represent            |
|                        |    |             | individual sets of data (e.g., histograms, box     |
|                        |    |             | plots) or to explore the relationship between      |
|                        |    |             | related sets of data (scatter plots, line graphs); |
| Scientific Method(124- |    |             | describe the correspondence between data sets      |
| 144)                   | DE | MA.8. 4.2.1 | and their graphical displays                       |
|                        |    |             | Find and use appropriate measures of center        |
| Scientific Method(124- |    |             | (mean, media, mode) and spread (range,             |
| 144)                   | DE | MA.8. 4.3.3 | interquartile range) to interpret data             |